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A method is evaluated for estimating the absorption coefficient a and the backscattering coefficient bb

from measurements of the upward and downward irradiances Eu~z! and Ed~z!. With this method, the
reflectance ratio R~z! and the downward diffuse attenuation coefficient Kd~z! obtained from Eu~z! and
Ed~z! are used to estimate the inherent optical properties R` and K` that are the asymptotic values of
R~z! and Kd~z!, respectively. For an assumed scattering phase function b̃, there are unique correlations
between the values of R` and K` and those of a and bb that can be derived from the radiative transfer
equation. Good estimates of a and the Gordon parameter G 5 bby~a 1 bb! can be obtained from R` and
K` if the true scattering phase function is not greatly different from the assumed function. The method
works best in deep, homogeneous waters, but can be applied to some cases of stratified waters. To
improve performance in shallow waters where bottom effects are important, the deep- and shallow-
measurement reflectance models also are developed. © 1997 Optical Society of America
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1. Introduction

Determination of the beam absorption, scattering,
and backscattering coefficients a, b, and bb of natural
waters is a primary goal of optical oceanographers.
These inherent optical properties1 ~IOP’s! affect the
ocean surface color, the transfer of heat to the upper
ocean, the transmission of photosynthetically avail-
able radiation through the water column, and under-
water visibility. The value of a is also used in
models that predict phytoplankton growth rate and
ocean primary production,2 and in situ measure-
ments of a and bb are necessary to validate remote
sensing algorithms designed to monitor IOP’s on a
global scale.

A common method for determining a is spectropho-
tometric analysis of discrete water samples.3 How-
ever, this method is time-consuming, has a limited
sampling rate, and is subject to errors. Alterna-
tively, a can be determined from in situ natural light
measurements. Most simply, a can be determined
from simultaneous in situ monochromatic irradiance
and monochromatic scalar irradiance measurements
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with the Gershun law4; however, monochromatic sca-
lar irradiance detectors are not yet readily available.
Instead, estimates of a have been made from near-
surface irradiance measurements in conjunction with
measurements of remote sensing reflectance5 or esti-
mates of the downward mean cosine of the radiance
distribution.6 However, the former requires addi-
tional above-surface measurements and accurate em-
pirical correlations, whereas the latter assumes the
downward mean cosine does not change significantly
within the surface layer, and both methods are sus-
ceptible to wave-induced fluctuations and to ship
shadow.

Reflecting-tube instruments make it possible to ob-
tain small-volume in situ estimates of a and c 5 a 1
b,7 where the beam attenuation coefficient c is the
inverse of the mean free path of a photon. Because
reflecting-tube instruments are subject to scattering
errors, they use a small sampling volume to minimize
these errors, and as a result these instruments can
break up or fail to collect large optically active aggre-
gates ~marine snow!, can give high readings that are
due to rare events of large particles entering the sens-
ing area, and can have difficulty detecting low con-
stituent concentrations.

In contrast, IOP estimation from natural irradi-
ances can be obtained from large-volume measure-
ments, and therefore small concentrations of
constituents, both large and small, can be detected.8
Another advantage of calculating IOP’s from irradi-
ance measurements is that it enables one to obtain
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the water properties and light field from the same
instrument. At the very least, large-volume mea-
surements can be correlated with small-volume mea-
surements to improve the confidence in these
estimates. Perhaps the primary advantage of the
large-volume methods is that much irradiance data
have already been collected and archived that can be
reanalyzed with new algorithms for the estimation of
a and bb.

Here we evaluate the estimation of a and bb from
only in situ profiles of the upward and downward
irradiances Eu~z! and Ed~z! at geometric depths z.
We note that Gordon and Boynton9 demonstrated
that good estimates of b are not possible from only
irradiance measurements, and for this reason we fo-
cus on estimating a and bb. Our approach is to de-
termine a and bb through the determination of the
reflectance R~z! and the downward diffuse attenua-
tion coefficient Kd~z!. The values of R~z! and Kd~z!
are used to estimate the IOP’s R` and K`, which are
the values far from the surface of R~z! and Kd~z!,
respectively. Given a specific scattering phase func-
tion b̃, there are unique correlations between the val-
ues of R` and K` and those of a and bb that can be
derived from the radiative transfer equation.

The relevant equations of radiative transfer are
introduced in Section 2. Estimation of R` and K` in
deep, homogeneous waters is considered in Section 3,
and the method of calculating a and bb from K` and
R` is presented in Sections 4 and 5. The importance
of selecting an appropriate scattering phase function
is investigated in Section 6, and a simplified algo-
rithm that is independent of the scattering phase
function is evaluated in Section 7. In Sections 8 and
9 we consider cases in which the water is optically
shallow and inhomogeneous, respectively.

2. Basic Equations

The integrodifferential transfer equation for waters
with homogeneous optical properties and no internal
sources is

m]L~z, m!y]z 1 cL~z, m! 5 b *
21

1

b̃~m, m9!L~z, m9!dm9,

(1)

where L~z, m! is the radiance integrated over all az-
imuthal directions for polar angle cos21 m with re-
spect to the depth z. All quantities in Eq. ~1! are
implicitly a function of wavelength. The azimuth-
ally integrated scattering phase function b̃~m, m9! is
normalized such that its expansion in Legendre poly-
nomials has the form

b̃~m, m9! 5
1
2 (

n50

M

~2n 1 1! fnPn~m!Pn~m9!, f0 5 1, (2)

where fn are the expansion coefficients, Pn~m! are the
Legendre polynomials, and M is the degree of scat-
tering anisotropy. The coefficient f1 5 g is the scat-
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tering asymmetry factor. The backscattering
coefficient,

bb 5 b *
21

0

b̃~m, 1!dm, (3)

can be calculated from10

b̃b 5 bbyb 5 ~1y2!F1 2 (
n odd

~2n 1 1! fn *
0

1

Pn~m!dmG (4)

once the fn coefficients are specified. The integral
factors in Eq. ~4! can be calculated numerically from
the recursion relationship ~n 1 1! *0

1 Pn~m!dm 5
2~n 2 2! *0

1 Pn22~m!dm, starting with *0
1 P1~m!dm 5

0.5.
The irradiance reflectance R~z! is

R~z! 5 Eu~z!yEd~z!, (5)

where Eu~z! and Ed~z! are the upward and downward
irradiances:

Eu~z! 5 *
21

0

umuL~z, m!dm, (6)

Ed~z! 5 *
0

1

mL~z, m!dm. (7)

The downward irradiance diffuse attenuation coeffi-
cient Kd is defined by

Kd~z! 5 2
1

Ed~z!

dEd~z!

dz
5 2

d ln@Ed~z!#

dz
. (8)

Although the magnitudes of R~z! and Kd~z! near
the surface depend on the surface illumination, at
large depths in deep homogeneous waters with no
internal sources the values of R~z! and Kd~z! ap-
proach asymptotic values R` and K`, respectively,
that are IOP’s. To evaluate R` and K`, we separate
the spatial and angular dependencies in Eq. ~1! with
the eigenmodes:

L~z, m! 5 f~6nj, m!exp~7czynj! (9)

and use Eq. ~2! to find that the discrete eigenfunc-
tions f~6nj, m! satisfy

f~6nj, m! 5
v0nj

2~nj 7 m!

3 (
n50

M

~2n 1 1! fngn~6nj!Pn~m!, nj . 1,

(10)

where v0 is the single-scattering albedo v0 5 byc.
The Chandrasekhar polynomials11 gn satisfy the re-
cursion formula

ngn~nj! 5 hn21njgn21~nj! 2 ~n 2 1!gn22~nj!, (11)



starting with g21 5 0 and g0 5 1, where hn 5
~2n 1 1!~1 2 v0fn!. From the spherical harmonics
~PN! method12 with N odd and arbitrarily large, the
positive eigenvalues nj are approximately the roots of

gN11~nj! 5 0. (12)

With this formalism, the procedure in Appendix A
shows that, for deep homogeneous waters, R` and K`

satisfy13

R` 5
*0

1 f~2n1, m!mdm

*0
1 f~1n1, m!mdm

, (13)

K` 5 cyn1, (14)

where n1 is the largest positive eigenvalue. Thus R`

can be computed directly from only b̃ and v0, whereas
K` can be determined from the values of b̃, v0, and c.
We can avoid the numerical integration in Eq. ~13! by
utilizing equations for computing the numerator and
denominator of Eq. ~13! that are given in Ref. 14 @Eq.
~22!#.

3. Estimation of R` and K` in Deep, Locally
Homogeneous Waters

Given the upward and downward irradiance mea-
surements at arbitrary depths z, R~z! is calculated
directly from Eq. ~5!. Values of Kd~z! are calculated
from finite differences of ln@Ed~z!# with respect to z,
an approximation that is exact at large depths where
ln@Ed~z!# varies linearly with z. Thus the calcula-
tion of R~z! at a specified depth requires the mea-
surement or interpolation of Eu~z! and Ed~z! at that
depth, whereas that of Kd~z! requires at least the
measurement of Ed~z! at two depths.

In optically deep, source-free, and homogeneous
waters, the vertical profiles of R~z! and Kd~z! ap-
proach the asymptotic values R` and K` that we seek.
The simplest approach to estimate R` and K` is to
calculate R~z! and Kd~z!, preferably at large depths,
and take R` 5 R~z! and K` 5 Kd~z!. We refer to this
as the asymptotic method ~AM! since the approxima-
tion is exact in the asymptotic regime. The accuracy
of this method depends on the degree to which the
light field differs from the asymptotic field and on the
noise in the irradiance measurements.

If measurement noise were negligible, the AM
would be essentially exact at sufficiently large
depths. For illustration, consider the case in which
the incident radiation is composed of 70% direct beam
and 30% diffuse skylight and the cosine of the angle
of the direct beam is m0 5 0.866. The corresponding
upper-boundary condition just above the sea surface
can be modeled as a superposition of direct sunlight,
defined with a Dirac delta function, and diffuse sky-
light:

L~02, m! 5 0.7d~m 2 0.866! 1 0.3, 0 # m # 1. (15)

Let v0 5 0.7 and let the scattering be characterized
by the Henyey–Greenstein scattering phase func-
tion15 b̃HG, for which fn 5 gn, with the scattering
asymmetry factor g 5 0.85. We take the 200th-
order scattering anisotropy ~M 5 200! and an index of
refraction of 1.34. From Eqs. ~13! and ~14!, we cal-
culate R` 5 0.04119 and K`yc 5 0.4707. The value
of K` is normalized by c so that the result depends
only on v0 and the fn values. Let the vertical dis-
tance be measured in optical depths t 5 cz and take
the water to be very deep ~50 optical depths! with a
purely absorbing bottom. As shown in Fig. 1, the
profiles of R~t! and Kd~t!yc converge to their asymp-
totic values. The profiles shown in Fig. 1 were com-
puted with the discrete ordinates radiative transfer
code DISORTB,16,17 which takes into account the index
of refraction mismatch at the surface. The magni-
tudes of R~t! and Kd~t!yc below t 5 2 each vary over
a range of approximately 6% and below t 5 4 vary by
less than 3%. This small range of R~t! and Kd~t!
values away from the surface is typical and aids in
the estimation of K`yc and R`.

Table 1 shows the error in values of R` and K`

predicted by the AM from the simulated data shown
in Fig. 1. Irradiance values at 1 optical depth ver-
tical spacing were used to calculate Kd~t!. The er-
rors in the predictions decrease monotonically with
depth. However, note that predictions from mea-
surements below 4 optical depths are accurate to
within a few percent. This indicates that even

Fig. 1. Diffuse attenuation coefficient and irradiance reflectance
profiles from simulated irradiance data ~v0 5 0.7, g 5 0.85!. The
values of R are multiplied by 10.

Table 1. Predictions of K` and R` from the Simulated Kd~t! and R~t!
Profiles of Fig. 1 versus the Depth of the Deepest Irradiance

Measurement

t

Error ~%!

AMa EMa

R` K`yc R` K`yc

3 4.0 4.5 0.78 1.3
4 2.5 2.8 0.32 0.48
5 1.6 1.8 0.12 0.19
7 0.68 0.75 0.012 0.018

aEstimates are made from the deepest values of R~t! and Kd~t!
~AM! and from extrapolation with an exponential model ~EM! for
Kd~t! and R~t!.
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though the AM is only theoretically exact at large
depths, it can produce good estimates from relatively
shallow measurements.

In practice, irradiance measurements contain
noise. Consider random noise r in the irradiance
measurements that is proportional to the irradiance
magnitude. The measured reflectance Rm~z! is

Rm~z! 5 S1 1
ru 2 rd

1 1 rd
DR~z!, (16)

where R~z! is the true reflectance and ru and rd are
the uncorrelated random noise in the upward and
downward irradiance measurements, respectively,
after any smoothing or averaging of the data. The
measured downward diffuse attenuation coefficient is

Kd
m~z! 5 Kd~z! 2 d@ln~1 1 rd!#ydz. (17)

When the AM is used, the relative error of R` is
independent of R~z! whereas that of K` is propor-
tional to @DzKd~z!#21, where Dz is the vertical spacing
between Kd~z! values. For example, if the noise rd
and ru is normally distributed, then the standard
deviations of ~ru 2 rd!y~1 1 rd! and @ln~1 1 rd,i11! 2
ln~1 1 rd,i!# are both approximately 1.4s if s is the
standard deviation of both ru and rd. In such a case,
the relative errors in R` and K` at large depths are
1.4s and 1.4sy@Kd~z!Dz#, respectively.

In addition to the AM for estimating R` and K`,
one can use analytical approximations to R~z! ~Ref.
18! and Kd~z! ~Ref. 19! given by

R~z! < R` 1 @R~zr! 2 R`#exp@23~z 2 zr!#, z . zr,
(18)

Kd~z! < K` 1 @Kd~zr! 2 K`#exp@23~z 2 zr!#, z . zr,
(19)

where zr is some reference depth and the IOP 3 can
be calculated20 from 3 5 c~n2

21 2 n1
21!, where n2 is

the second largest positive eigenvalue from Eq. ~12!.
Because values of R~z! and Kd~z! are predicted for
depths below those of the measurements, we refer to
this method as the extrapolation method ~EM!. At
large depths the exponential term in Eqs. ~18! and
~19! becomes negligible and EM estimates become
equal to those from the AM. From values of R~z! at
depths z0, z1, and z2, with z1 5 ~z0 1 z2!y2, R` can be
obtained from Eq. ~18! as20

R` 5
R~z0!R~z2! 2 R2~z1!

R~z0! 1 R~z2! 2 2R~z1!
. (20)

An analogous equation19 holds for the determination
of K` from Eq. ~19!.

Estimates of R` and K` from the EM for the noise-
free data in Fig. 1 are given in Table 1. Irradiance
values at 1 optical depth vertical spacing were used,
and the results are presented as a function of the
depth of the deepest irradiance value used. All pre-
dictions are within 0.8% of the true value and, as
expected, improve with increasing depth. This indi-
cates that R` and K` can be estimated from relatively
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shallow measurements, at least when there is no sim-
ulated noise. For example, at t 5 3, R` calculated
from the EM is within 0.78% of the true value,
whereas R` estimated by the AM is in error by 4%.
Similarly, at t 5 4, K` calculated from the EM is
within 0.48% of the true value, whereas K` estimated
by the AM is in error by 2.8%.

When noise is present, however, estimation of R`

and K` from the EM can give improved results over
the AM only if the noise in R~z! and Kd~z! is much
smaller than the exponential terms in Eqs. ~18! and
~19! at the depths of the measurements. Thus the
extrapolation method may be superior near the sur-
face, but it is inferior to the AM at depths where the
true R~z! and Kd~z! vary only slowly with depth. Be-
cause our emphasis is on deeper-water applications,
the EM is not examined further.

4. Estimation of Fundamental IOP’s from R` and K`

The parameters a, b, and bb are fundamental IOP’s.
In addition, Gordon et al.21 showed that R~t! at the
surface is nearly proportional to the ratio bby~a 1 bb!,
and many remote sensing algorithms are designed to
measure either bbya or bby~a 1 bb!. We choose to
define the ratio G 5 bby~a 1 bb! as the ~dimension-
less! Gordon parameter in view of his many contri-
butions to the field of ocean optics and his observation
of the importance of G in remote sensing applications.

If the scattering phase function b̃ is assumed, then
a and bb can be determined from measurements of R`

and K`. The first step in the solution of this inverse
problem is to calculate v0 from R` and b̃, or from R`

and g if the phase function b̃HG is assumed. For
example, Fig. 2 shows the interdependence of R`, v0,
and g for the phase function b̃HG. Although in a
typical forward calculation R` depends on v0 and g,
in this inverse problem R` is a measured quantity.
The value of v0~R`, g! can be found from an iterative
solution of Eq. ~13! with the help of Eqs. ~10!–~12!,
and in the process the value of n1 is calculated from
Eq. ~12!. Next, c is calculated from n1 and the mea-
sured value of K` from Eq. ~14!, a and b are calculated
from v0 and c, and bb is computed from Eq. ~4! with
use of fn 5 gn with the assumed g. Finally, ratios
such as bbya and bby~a 1 bb! can be formed from a
and bb.

Fig. 2. Interdependence of R`, v0, and g for b̃HG.



Table 2 gives example calculations of the errors in
the estimated values of a, bb, bbya, and G obtained
from various values of R` and K` when the true IOP’s
are v0 5 0.7 and g 5 0.85. These computations were
performed with a 5 0.15 and b 5 0.35 and the correct
phase function and by an iterative search for the
optimal value of v0. We achieved the search by min-
imizing the error in the calculated value of R` with
respect to v0 using Brent’s method,22 which is a com-
bination of an inverse parabolic interpolation and a
golden-section search. It can be seen that the errors
in the calculations of the fundamental IOP’s are of
the same order of magnitude as the errors in R` and
K`. Estimates of a are best when the errors in R`

and K` have the same sign, whereas estimates of bb
are best when the errors in R` and K` have the
opposite sign. As can be seen from Table 2, bbya and
G do not depend on K` since bbya 5 b̃bv0~1 2 v0!21

and G 5 @1 1 ~1 2 v0!y~v0b̃b!#21 and v0 is indepen-
dent of K`.

In practice, b̃ is not well known, and therefore es-
timates of v0 and c ~and of a and bb! will contain
errors that are due both to measurement errors in R`

and K` and to the error in the assumed b̃. Table 3
shows the percent errors in estimates of a and bb
calculated with the same iterative solution code as for
Table 2 but with unknown g and for R` and K` that
were computed for the indicated values of v0 and g.
For the assumed g 5 0.85, the values of a and bb are
underestimated when the true g , 0.85, are exact
when g 5 0.85, and are overestimated when g . 0.85.
For this large range of g, the worst estimate of a was

Table 2. Percent Errors in the Estimates of IOP’s for Selected Values
of Percent Errors in R` and K`

Error ~%!

R` K` a b and bb bbya G

5 0 21.04 3.32 4.41 4.06
25 0 1.08 23.38 24.41 24.08

5 5 3.91 8.49 4.41 4.06
25 5 6.14 1.45 24.41 24.08

5 25 25.99 21.84 4.41 4.06
25 25 23.97 28.21 24.41 24.08

0 5 5.00 5.00 0 0

Table 3. Percent Errors in the Estimates of a and bb for Waters with
Given Values of g and v0

a

g

Error ~%!

v0 5 0.5 v0 5 0.7 v0 5 0.9

a bb a bb a bb

0.75 21.6 28.9 21.2 29.6 20.52 29.8
0.80 20.83 24.4 20.65 24.9 20.30 25.1
0.90 0.86 3.7 0.78 4.6 0.45 5.3
0.95 1.6 6.1 1.7 7.9 1.2 10

aThe estimates were obtained assuming g 5 0.85 and using the
R` and K` values for the indicated g and v0.
in error by only 1.5%, whereas those for bb were
generally within 10%.

To assess more thoroughly the accuracy of predict-
ing fundamental IOP’s from R` and K`, in Section 5
we examine the sensitivity coefficients that quantify
the extent to which errors in R`, K`, and g affect the
estimates of the fundamental IOP’s.

5. Sensitivity Coefficients

Normalized sensitivity coefficients express the ratio
of the relative error in an output ~e.g., a! to a small
relative error in an input ~e.g., R`!. In the develop-
ment of equations for sensitivity coefficients in this
section, it is assumed that the phase function can be
expressed as a function of a single parameter, such as
the scattering asymmetry factor g of the Henyey–
Greenstein phase function that is used for the nu-
merical calculations.

A. Sensitivity Coefficients for v0 and c

From the iterative search method discussed in Section
4, one can numerically solve for ~R`yv0!~]v0y]R`! and
~gyv0!~]v0y]g!. These normalized sensitivity coeffi-
cients quantitatively express the sensitivity of the es-
timates of v0 to errors in the measurement of R` and
in the guess for g, respectively. Furthermore, these
coefficients are required to calculate the sensitivity
coefficients for the other fundamental IOP’s. As
shown in Appendix B, these sensitivity coefficients can
also be expressed in terms of sensitivity coefficients for
the forward problem. Because the forward problem is
much easier to compute than the inverse problem, ~R`y
v0!~]v0y]R`! and ~gyv0!~]v0y]g! were computed with
Eqs. ~B1! and ~B2!.

In Fig. 3 ~R`yv0!~]v0y]R`! is shown as a function of
v0. For 0.75 , g , 0.95, this normalized sensitivity
coefficient varies roughly linearly from approxi-
mately 0.7 for v0 5 0.2 to 0.05 for v0 5 0.99. This
indicates that estimates of v0 from R` are moderately
insensitive to small errors in R` and are least sensi-
tive where the absorption relative to the beam atten-
uation is lowest. The sensitivity coefficient itself is

Fig. 3. Normalized sensitivity coefficient of v0 with respect to R`

for g of b̃HG.
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only weakly dependent on g but is highest for small g
when v0 . 0.5 and for large g when v0 is small.
Unfortunately, as can be seen in Fig. 4, estimates of
v0 are much more sensitive to g than to R`. The
sensitivity of v0 to g is highly dependent on both g
and v0, and it is highest for large g and for small v0.
Thus the sensitivities of v0 to errors in both g and R`

are lowest, and therefore estimates of v0 will be best,
when v0 is high. For v0 5 0.7 and g 5 0.85, for
example, a 10% uncertainty in g can result in approx-
imately an 18% uncertainty in v0, which would be
unacceptably large. Much greater errors may result
when g is very high ~g . 0.9!, which is typical for the
Petzold phase functions.23 Because we wish to im-
plement this method of estimating IOP’s without
knowledge of g, the high sensitivity of v0 to g places
a serious limitation on our ability to estimate v0.
However, some other IOP’s calculated from v0, in
particular a, are far less sensitive to g.

In the inverse problem, the largest eigenvalue n1 is
a function of v0~R`, g! and g and therefore can be
written alternatively as a function of the independent

Fig. 4. Normalized sensitivity coefficient of v0 with respect to g of
b̃HG.

Fig. 5. Normalized sensitivity coefficient of c with respect to R`

for g of b̃HG.
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variables R` and g. The beam attenuation coeffi-
cient is found from

c 5 n1~R`, g!K`, (21)

but henceforth the dependence of n1 and v0 on R` and
g will not be denoted explicitly. Note that K` is a
measured and therefore independent quantity. One
can evaluate the normalized sensitivity coefficients
for c from Eq. ~21!:

K`

c
]c

]K`

5
K`

c
n1 5 1, (22)

R`

c
]c

]R`

5
R`

c
K`

]n1

]R`

5
R`

n1

]n1

]R`

, (23)

g
c

]c
g

5
gK`

c
]n1

]g
5

g
n1

]n1

]g
. (24)

These are expressed in terms of normalized sensitiv-
ity coefficients ~R`yn1!~]n1y]R`! and ~gyn1!~]n1y]g!,
which must be computed either from an iterative
solution method or, more easily, from Eqs. ~B3! and
~B4!. The magnitude of ~R`yc!~]cy]R`!, shown in
Fig. 5, is typically less than unity, except for high v0
and low g, and is especially low when v0 is low.
However, the sensitivity of c to g, shown in Fig. 6, is
similar in magnitude to that of v0 to g, except that it
is lowest for low values of v0 and highest for high
values of v0.

B. Sensitivity Coefficients for a, bb, bbya, and G

Because

a 5 c~1 2 v0!, ]ay]v0 5 2c, ]ay]c 5 ~1 2 v0!, (25)

b 5 cv0, ]by]v0 5 c, ]by]c 5 v0, (26)

Fig. 6. Normalized sensitivity coefficient of c with respect to g of
b̃HG.



the normalized sensitivity coefficients for a can be
determined directly from those for v0 ~Figs. 3 and 4!
and c @Eqs. ~22!–~24!#:

K`

a
]a

]K`

5
K`

a
]a
]c

]c
]K`

5
K`

a
~1 2 v0!n1 5 1, (27)

R`

a
]a

]R`

5
R`

a F]a
]c

c
R`

SR`

c
]c

]R`
D 1

]a
]v0

v0

R`
SR`

v0

]v0

]R`
DG

5 SR`

c
]c

]R`
D 2 S v0

1 2 v0
DSR`

v0

]v0

]R`
D , (28)

g
a

]a
]g

5
g
a F]a

]c
c
g Sg

c
]c
]gD 1

]a
]v0

v0

g S g
v0

]v0

]g DG
5 Sg

c
]c
]gD 2 S v0

1 2 v0
DS g

v0

]v0

]g D . (29)

Similarly, the normalized sensitivity coefficients for b
are

K`

b
]b

]K`

5
K`

b
v0n1 5 1, (30)

R`

b
]b

]R`
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]g DG
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]c
]gD 1 S g

v0

]v0

]g D . (32)

Thus, all else being equal, the percent error in a and
b that is due to an error in K` is equal to the percent
error in K`. The normalized sensitivity coefficients
for b to R` and g are equal to the sum of those for c
and v0 to R` and g, respectively, whereas the expres-
sions for the normalized sensitivity coefficients for a
to R` and g are similar to those for b except that for
a the coefficients involving v0 are scaled by 2v0y~1 2
v0! 5 2bya. Note that because ]cy]R` and ]v0y]R`

have the same sign, the sensitivity coefficients for a
are less than those for b, which is consistent with the
observation in Section 4.

The coefficient ~gya!~]ay]g! is shown in Fig. 7.
The absolute value of the magnitude of the coefficient
is very low ~,0.16! for v0 , 0.99. It is highly depen-
dent on v0, with the largest magnitude corresponding
to moderate values of v0. The coefficient ~R`ya!~]ay
]R`! is shown in Fig. 8. This coefficient also is rel-
atively small, with typical values ranging from 20.1
to 20.6 for v0 , 0.9. Therefore, even though a is
calculated from v0 and c, each of which are poorly
estimated from R` and K`, a can be calculated quite
well. As expected, the sensitivity of b to g as calcu-
lated from Eq. ~32! is very large, especially for large
values of g, and therefore reasonable estimates of b
when b̃ is not known are not possible.

The normalized sensitivity coefficient of bb to g is
the sum of those of b to g and b̃b to g:

g
bb

]bb

]g
5

g
b

]b
]g

1
g
b̃b

]b̃b

]g
. (33)

This introduces a fifth sensitivity coefficient ~gy
b̃b!~]b̃by]g! that must be computed numerically. A
plot of ~g]bb!y~bb]g! is shown in Fig. 9. The terms
~gyb!~]by]g! and ~gyb̃b!~]b̃by]g! tend to cancel out be-
cause the signs are different, so estimates of bb are
moderately insensitive to g @0.4 , u~g]bb!y~bb]g!u ,
0.9#, indicating that estimates of bb will be reasonable
even if g is not well known. Because bb 5 b̃bb, the
normalized sensitivity coefficient of bb to K` is unity,
whereas that of bb to R` is identical to that for b given
in Eq. ~31! and is shown in Fig. 10.

Fig. 7. Normalized sensitivity coefficient of a with respect to g of
b̃HG.

Fig. 8. Normalized sensitivity coefficient of a with respect to R`

for g of b̃HG.
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Recall that both bbya and G are independent of K`.
The normalized sensitivity coefficient of bbya to g is

g
~bbya!

]~bbya!

]g
5

g
bb

]bb

]g
2

g
a

]a
]g

5
g
b̃b

]b̃b

]g
1

1
~1 2 v0!

g
v0

]v0

]g
, (34)

and the sensitivity coefficient of G to g is proportional
to that of ~bbya! to g:

g
G

]G
]g

5
a

a 1 bb
F g
~bbya!

]~bbya!

]g G . (35)

Because ]bby]g and ]ay]g have the same sign and
u~g]bb!y~bb]g!u . u~g]a!y~a]g!u, then from Eq. ~34! the
magnitude of the sensitivity of bbya to g is less than
that of bb, and because ay~a 1 bb! , 1, then from Eq.
~35! G is even less sensitive to g than is bbya, espe-
cially for large v0. The normalized sensitivity coef-

Fig. 9. Normalized sensitivity coefficient of bb with respect to g of
b̃HG.

Fig. 10. Normalized sensitivity coefficient of b or bb with respect
to R` for g of b̃HG.
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ficients of bbya and G to R` are in the same form as
those to g:

R`

~bbya!

]~bbya!

]R`

5
R`

b̃b

]b̃b

]R`

1
1

~1 2 v0!

R`

v0

]v0

]R`

, (36)

R`

G
]G
]R`

5
a

a 1 bb
F R`

~bbya!

]~bbya!

]R`
G . (37)

The sensitivities of G are shown in Figs. 11 and 12.

6. Choice of the Phase Function Model

Equations ~29! and ~32! hold for any model of the
phase function b̃ that can be specified by a single
parameter g. In Figs. 7 and 9 the one-term Henyey–
Greenstein function was used because of its simplic-
ity. Other models could be used, however. For
example, phase functions obtained by a combination
of the pure seawater phase function and the Petzold
particle phase function24 can also be specified by the

Fig. 11. Normalized sensitivity coefficient of G with respect to R`

for g of b̃HG.

Fig. 12. Normalized sensitivity coefficient of G with respect to g of
b̃HG.



value of g or, more commonly, the chlorophyll con-
centration.

Even if the single parameter defining the phase
function model is known, errors may be introduced
into the estimates of a and bb if the shape of the true
phase function differs from that predicted by the
model. For example, Fig. 13 shows four phase func-
tions that are all characterized by g 5 0.85 but that
have very different shapes in the backscattering di-
rections. These were generated from the two-term
Henyey–Greenstein model,25 which is a linear com-
bination of two one-term Henyey–Greenstein func-
tions:

b̃~g1, g2, a! 5 ab̃~g1! 1 ~1 2 a!b̃~g2!, (38)

with parameters g1, g2, and a, for 0 # a # 1. Selection
of a negative g2, for example, yields an enhanced back-
scattering effect. Shown are a, the one-term function
~g1 5 0.85, a 5 0!; b, a monotonic function with more
backscattering ~g1 5 0.88, g2 5 20.062, a 5 0.97!; c,
the function whose first three moments match those of
the water–Petzold particle mixture model24 ~g1 5 0.90,
g2 5 20.26, a 5 0.96!; and d, a case with extremely
high backscattering ~g1 5 0.90, g2 5 20.64, a 5 0.97!.

The phase functions in Fig. 13 were used to deter-
mine the effect of the amount of backscattering in the
assumed phase function on the estimates of the
IOP’s. Values of R` and K` were first calculated
from the forward problem for each of the four phase
functions. Then the values of a and bb were esti-
mated from the R` and K` with the approach in
Section 4 assuming either phase function a or c. Ta-
ble 4 shows the percent errors in the estimated IOP’s.
Estimates of bb were several times more sensitive to
the assumed b̃ than were those of a. Because phase
functions a and b are decreasing monotonically in the
backscattering direction, estimates of bb assuming
phase function a were in error by as much as 30%
when the true b̃ exhibits the enhanced backscatter-

Fig. 13. Two-term Henyey–Greenstein phase function model for
g 5 0.85 and a, g1 5 0.85, a 5 0; b, g1 5 0.88, g2 5 20.062, a 5
0.97; c, g1 5 0.90, g2 5 20.26, a 5 0.96; and d, g1 5 0.90, g2 5
20.64, a 5 0.97.
ing of phase functions c and d. Similarly, assuming
phase function c when the true phase function was a
or b led to large errors. Conversely, when phase
function c was assumed and the true b̃ was phase
function d, which also exhibits enhanced backscatter-
ing, the estimates of a and bb were in error by only
1.7% and 2.8%, respectively, even though the magni-
tude of phase function d at 180 deg is several times
larger than that of c.

These results show that, to obtain good estimates of
bb, it is not sufficient for the assumed phase function
to be characterized by an appropriate value of g; the
amount of backscattering is also important. In par-
ticular, the one-term Henyey–Greenstein function
model should not be used in the estimation of bb in
natural waters; the Petzold phase function or a two-
term Henyey–Greenstein function similar to c would
be better.

7. Phase-Function-Independent Algorithm

Haltrin26 recognized that a simple model for an ap-
proximate phase function b̃~m, m9! 5 2b̃b 1 2~1 2
2b̃b!d~m 2 m9! conveys much of the information
needed to describe highly forward scattering. For
this b̃ he derived equations for R` and K`yc from a
carefully derived two-flux theory:

a
bb

5
~1 2 ÎR`!2~1 1 4ÎR` 1 R`!

4R`

, (39)

K`yc 5 ~1 2 v0!H 1 1 G
1 1 2G 2 @G~4 1 5G!#1y2J1y2

. (40)

Equation ~39! can be used to estimate aybb from R`,
and G can be calculated from G 5 ~1 1 aybb!21.
Then a can be estimated from a rearrangement of Eq.
~40!:

a 5 K`H 1 1 G
1 1 2G 2 @G~4 1 5G!#1y2J21y2

, (41)

which enables one to also obtain bb. The primary
difference between Haltrin’s model and that proposed
in Section 4 is that in Haltrin’s model only two closed-

Table 4. Percent Errors in the Estimates of IOP’s for v0 5 0.7 and the
Two-Term Henyey–Greenstein Phase Functions Shown in Fig. 13a

True b̃

Error ~%!

Assumed b̃ Phase
Function a

Assumed b̃ Phase
Function c

a bb G a bb G

a 0.0 0.0 0.0 5.8 252 249
b 22.5 217 214 3.1 14 9.5
c 25.3 228 222 0.0 0.0 0.0
d 26.9 226 219 21.7 2.8 4.0

aThe assumed b̃ is either the one-term phase function a ~a 5 0
and g1 5 0.85! or the two-term function c ~g1 5 0.90, g2 5 20.26,
a 5 0.96!. The true phase functions used in the forward calcula-
tion of R` and K` are functions a, c, b ~g1 5 0.88, g2 5 20.062, a
5 0.97!, and d ~g1 5 0.90, g2 5 20.64, a 5 0.97!.
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form analytical equations are needed and no assump-
tion about the phase function is required, whereas in
the method proposed in Section 4 an assumed phase
function must be incorporated into the iterative so-
lution of Eqs. ~10!–~13!. Although Eqs. ~39! and ~41!
have the significant advantage in that they are easier
to implement in practice, they are less flexible since
they do not admit a priori information about the
phase function.

Table 5 shows the percent errors in estimates of a
and bb obtained from Eqs. ~39! and ~41! for the
one-term Henyey–Greenstein phase function with
0.75 # g # 0.95 and 0.5 # v0 # 0.9. As for Table
3, the values of R` and K` were computed for the
given values of v0 and g. The calculations were
performed for c 5 1; however, the percent errors in
a and bb were found to be insensitive to the value of
c. The errors in the estimates of a range from 1.4%
to 5.2%, whereas those in the estimates of bb range
from 32% to 100%. The errors in a are roughly
twice those in Table 3 obtained with the approach
described in Section 4, whereas the errors in bb are
many times larger. Similar results were obtained
with the San Diego Petzold water phase function for
a case of 10-mgym3 chlorophyll concentration and
685-nm light; for v0 5 0.5, 0.7, and 0.9 the percent
errors in a were 1.8, 2.6, and 1.9, respectively, and
the percent errors in bb were 44, 61, and 81, respec-
tively.

The large errors in bb should be expected because of
the high sensitivity of bb to the shape of the backscat-
tering portion of b̃ demonstrated in Section 6. The
degree to which the b̃-dependent approach of Section
4 outperforms Haltrin’s approach depends on how
well the assumed b̃ matches the actual scattering
phase function of the water.

8. IOP Estimation in Shallow Waters

In shallow water where the entire water column is
in the euphotic zone, profiles R~z! and Kd~z! are
affected by the interaction of light with the bottom.
Although the effects of the bottom usually do not
reach as far into the water column as do surface
conditions, bottom effects can cause errors in IOP
estimation. If the water is so shallow that signif-

Table 5. Percent Errors in the Estimates of a and bb Obtained from
Haltrin’s Model for c 5 1 and the One-Term Henyey–Greenstein Phase

Functiona

g

Error ~%!

v0 5 0.5 v0 5 0.7 v0 5 0.9

a bb a bb a bb

0.75 2.2 50 2.5 67 1.4 82
0.80 2.8 51 3.2 71 2.0 90
0.85 3.2 50 4.0 73 2.7 98
0.90 3.4 44 4.6 69 3.8 100
0.95 2.8 32 4.5 53 5.2 97

aValues of R` and K` were calculated for the given v0 and g, and
were used to estimate a and bb from Eqs. ~39! and ~41!.
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icant surface and bottom effects overlap, then R~z!
and Kd~z! never reach R` and K`, respectively.
However, estimates of R` and K` can still be made
in water of at least a few optical depths. In this
case, R~z! and Kd~z! near the surface tend toward
R` and K` with increasing depth and near the bot-
tom deviate away from R` and K`. The asymptotic
method for estimating R`, for example, can be ap-
plied by taking R` 5 R~zm! at a mid-water-column
depth zm where R~z! is a maximum or minimum or
is at an inflection point.

Figure 14 shows R~t! for water of 5 optical depths
with a purely absorbing bottom, i.e., the bottom al-
bedo Rb vanishes. This water is characterized by v0
5 0.70, g 5 0.85 and R` 5 0.0412 based only on the
IOP’s. From top to bottom, R~t! increases from its
surface value toward the value of R` and then de-
creases to the bottom value of Rb 5 0. The best place
to apply the AM in this case is at the maximum R~t!.
Such an estimate will always be shy of the true value,
but it is difficult to know by how much, especially
from noisy measurements. Figure 15 shows the
same water as in Fig. 14, but with a Lambertian
reflecting bottom of Rb 5 0.2. In this case R~t! has
an inflection point near the depth where R~t! 5 R`,
although it is barely detectable because of the large
bottom effects. Because Rb .. R`, values of R~t!
deep in the water column are far from R`.

To improve our ability to treat shallow waters, two
alternative methods for calculating R` from Ed~z!
and Eu~z! near the bottom are derived in Appendix C:
the deep-measurement reflectance model ~DMRM!
and the shallow-measurement reflectance model
~SMRM!. For the DMRM one must make measure-
ments of Ed~z! and Eu~z! at two depths, subtract and
add the irradiances at each depth, square the results,

Fig. 14. Estimation of R` in water of 5 optical depths with a
purely absorbing bottom ~Rb 5 0!. Shown are R` from Eq. ~13!,
the local irradiance ratio R~t! that forms the asymptotic model
~AM!, and the depth-dependent estimates of R` from the deep-
measurement reflectance model ~DMRM! and the shallow-
measurement reflectance model ~SMRM!.



and evaluate the differences at the two depths. The
estimated value of R` follows from

S1 2 R`

1 1 R`
D2

5
@Ed~z! 2 Eu~z!#2uz1

z2

@Ed~z! 1 Eu~z!#2uz1

z2
. (42)

Note that this technique for estimating R` can be es-
pecially useful for z near the bottom because it incor-
porates the growing eigenmode g̃1~7n1!exp~czyn1! ~see
Appendix C! that is needed to account for the asymp-
totic contribution of the bottom boundary condition.
An advantage of the DMRM is that the bottom albedo
Rb need not be known, but a disadvantage is that
differences of noisy irradiance measurements poten-
tially can lead to large errors.

For the SMRM one needs to know the bottom al-
bedo Rb and the depth of the water column zb. From
measurements of R~z! at arbitrary geometric depth z,
R` can be predicted from

R` 5 $R~z! 2 Rb exp@22Kd~z!~zb 2 z!#%y

$1 2 exp@22Kd~z!~zb 2 z!#%. (43)

The values of R` predicted by the AM, where R` 5
R~z!, the DMRM, and the SMRM are shown as a func-
tion of depth in Figs. 14 and 15. Estimates of R` from
the SMRM require an estimate of K`; however, it was
found that these estimates are not very sensitive to K`,
and the approximation K` 5 Kd~t! was used in Figs. 14
and 15. It can be seen that the DMRM method does
poorly compared with the AM near the surface but
yields much better estimates than the AM below mid-
depth. The SMRM method performs better than the
DMRM near the surface, but performs worse than the
DMRM near the bottom. Both the DMRM and the
SMRM give the best estimates of R` at mid-depths,
away from both boundaries.

Estimates of R`~t! from the DMRM method are
more susceptible to noise in the irradiance measure-
ments than are those from the SMRM or AM. How-
ever, smoothing of R`~t! was found to be effective in

Fig. 15. Estimation of R` as in Fig. 14 for a Lambertian bottom
reflectance of Rb 5 0.2.
reducing this noise in simulated data, making good
estimates of R` from the DMRM possible.

Profiles of Kd~z! tend to be less influenced by the
bottom depth and albedo than are R~z!, especially if
the bottom is highly absorbing. Similar to R~z!, K~z!
tends to be closest to K` at its minimum, maximum,
or inflection point. Unfortunately, a shallow-water
method such as those for R` could not be developed
for K`.

9. IOP Estimation in Inhomogeneous Waters

For inhomogeneous waters, R` and K` as computed
from Eqs. ~13! and ~14! now depend on the local IOP’s
at z, so that R`~z! and K`~z! are a function of depth.
If the optical properties vary only gradually with
depth, then R~z! ' R`~z! and Kd~z! ' K`~z! below the
depths where the surface illumination dominates.
On the other hand, if the optical properties are highly
variable with depth, some type of weighted average of
the IOP’s can be estimated, but the fine structure
cannot be determined accurately.

Figure 16 shows a simulated example of three dis-
tinct water layers. For all three layers g 5 0.85, but
v0 5 0.7, 0.65, and 0.60, from top to bottom. Shown
are R` from Eq. ~13!, the local irradiance ratio R~t!,
and the estimate of R`~t! from the DMRM. The AM
for estimating R`~t! in the three layers could be ap-
plied by one taking the maximum R~t! in the upper
layer, the inflection point in the middle layer, and the
asymptotic value in the deep bottom layer. Because
the top two layers in this case are both affected by a
distinctly different layer below them, estimates of R`

from the DMRM are more accurate than those from
the AM just above the interfaces, but are less accu-
rate just below the interfaces. Both methods do a
good job of identifying the location of the interfaces.

10. Summary

We have tested numerically an inverse radiative
transfer method for estimating two inherent optical

Fig. 16. Estimation of R` in three distinct water layers. From
top to bottom, v0 5 0.7, 0.65, and 0.60. Shown are R` from Eq.
~13!, the local irradiance ratio R~t!, and the estimate of R`~t! from
the DMRM.
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properties from the irradiance ratio R~z! and the
downward diffuse attenuation coefficient Kd~z! com-
puted from upward and downward irradiance mea-
surements. The method involves two steps. First,
the IOP’s R` and K` are estimated from R~z! and
Kd~z!. Second, IOP’s such as a and bb are calculated
from the analytical equations in ~13! and ~14! for R`

and K`.
The simplest approach to the first step is to use the

AM, where it is assumed R` 5 R~z! and K` 5 Kd~z!.
In deep waters, the exponential method of Eqs. ~18!
and ~19! can yield better results than the AM if only
shallow irradiance measurements are available. On
the other hand, in shallow waters the DMRM and
SMRM reflectance models of Eqs. ~42! and ~43! yield
better estimates for R` than the AM, but we were
unable to develop a deep- or shallow-measurement
diffuse attenuation coefficient model.

In the second step, a scattering phase function is
assumed, and v0 is estimated from R` with an iter-
ative search. The values of a and bb are then calcu-
lated from v0 and K`. This approach was compared
with Haltrin’s model that relates a and bb to R` and
K` through two closed-form equations ~39! and ~41!.
Although Haltrin’s model is easier to implement, it is
generally less accurate because no a priori informa-
tion about the scattering phase function can be incor-
porated.

Example numerical calculations and a sensitivity
analysis have shown that the absorption coefficient
and the Gordon parameter G 5 bby~a 1 bb! can be
estimated quite well even if the scattering asymme-
try factor is unknown. However, it was shown with
use of the two-term Henyey–Greenstein phase func-
tion that, because bb is sensitive to the backscattering
portion of the phase function, it is important to use a
realistic scattering phase model, such as a Petzold
phase function, in the inverse solution.

Appendix A: Deep-Water Asymptotic Irradiance Ratio
and Diffuse Attenuation Coefficient

The radiance for a source-free ~i.e., no fluorescence or
Raman scattering effects! homogeneous medium can
be expressed as a superposition of eigenmodes of Eq.
~9!. The downward irradiance Ed~z! 5 E1~z! and the
upward irradiance Eu~z! 5 E2~z! are obtained from an
integration of the radiance over m with Eqs. ~6! and ~7!:

E6~z! 5 (
j51

J

@C~nj! g̃1~6nj!exp~2czynj!

1 C~2nj! g̃1~7nj!exp~czynj!#, (A1)

where

g̃1~n1! 5 *
0

1

f~n1, m!mdm,

g̃1~2n1! 5 *
21

0

f~n1, m!umudm 5 *
0

1

f~2n1, m!mdm, (A2)
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and the expansion coefficients C~6nj! depend on the
IOP’s and the surface illumination and bottom albedo
boundary conditions. Beyond a couple of optical
depths from either of the boundaries, the eigenvalues
6n1 make the dominant contributions so Eq. ~A1! can
be approximated by

E6~z! < C~n1! g̃1~6n1!exp~2czyn1!

1 C~2n1! g̃1~7n1!exp~czyn1!, (A3)

and for deep waters where there are no bottom ef-
fects, C~2n1! 3 0 and

R` 5 g̃1~2n1!yg̃1~n1!, (A4)

which is Eq. ~13!. In a similar manner, use of Eq.
~A3! with C~2n1! 5 0 and Eq. ~8! yields K` of Eq. ~14!.

Appendix B: Relationship between the Sensitivity
Coefficients of the Forward and Inverse Problems

The sensitivity coefficients for the inverse problem
~the computation of v0 and n1 from R` and g! can be
computed more easily when they are expressed in
terms of partial derivatives of the forward problem
~the computation of R` and n1 from v0 and g!. Let
the superscript f denote forward-problem variables,
which depend on v0 and g, and unmarked variables
denote inverse-problem variables. If we make a
transformation of variables and use the Jacobian of
the transformation, it follows that

]v0

]R`

5
1

]R`
fy]v0

, (B1)

]v0

]g
5 2

1
]R`

fy]v0

]R`
f

]g
, (B2)

where R`
f is computed directly from Eq. ~13!. These

results are consistent with those of Fig. 2. Further-
more, from the chain rule and the previous two equa-
tions,

]n1

]R`

5
]n1

f

]v0

]v0

]R`

5
]n1

f

]v0

1
]R`

fy]v0
, (B3)
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5
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1
]R`

fy]v0

]R`
f

]g
. (B4)

Appendix C: Estimation of the Asymptotic Irradiance
Ratio Near the Bottom

1. Derivation of the DMRM

From Eqs. ~A3! and ~A4!,

E1~z! 6 E2~z! < g̃1~n1!~1 6 R`!@C~n1!exp~2czyn1!

6 C~2n1!exp~czyn1!#. (C1)



After squaring the last equation we can see that

@E1~z! 6 E2~z!#2 < g̃1
2~n1!~1 6 R`!2@C2~n1!

3 exp~22czyn1! 1 C2~2n1!

3 exp~2czyn1! 6 2C~n1!C~2n1!#.
(C2)

Equation ~42! follows after we evaluate this equation
at two depths z1 and z2 and take the difference of the
results.

2. Derivation of the SMRM

From Eqs. ~A3! and ~A4!,

R~z! 5
E2~z!

E1~z!
5

R` 1 C~2n1!exp~2czn1!yC~n1!

1 1 C~2n1!R` exp~2czyn1!yC~n1!
, (C3)

so it follows that

R~z! 2 R` 5
C~2n1!~1 2 R`!exp~2czyn1!yC~n1!

1 1 R`C~2n1!exp~2czyn1!yC~n1!
. (C4)

For z in Eq. ~C4! just below the surface,

R~01! 2 R` 5
C~2n1!~1 2 R`!yC~n1!

1 1 R`C~2n1!yC~n1!
, (C5)

whereas for z in Eq. ~C4! at the bottom, z 5 zb, the
reflectance equals the bottom albedo Rb, and

Rb 2 R` 5
C~2n1!~1 2 R`!exp~2czbyn1!yC~n1!

1 1 R`C~2n1!exp~2czbyn1!yC~n1!
. (C6)

From Eqs. ~C5! and ~C6!,

~Rb 2 R`!exp~22czbyn1! 5

@R~01! 2 R`#@1 1 C~2n1!R`yC~n1!#

1 1 R`C~2n1!exp~2czbyn1!yC~n1!
. (C7)

If R`C~2n1!yC~n1! ,, 1, then

~Rb 2 R`!exp~22czbyn1! < R~01! 2 R`. (C8)

It follows that if the bottom albedo is known and K`

5 cyn1 is estimated from Ed~z!, then R` can be esti-
mated from R~01!:

R` 5 @R~01! 2 Rb exp~22K`zb!#y@1 2 exp~22K`zb!#.

(C9)

This equation has been used by others, e.g., Ref. 27.
Equation ~43! is a generalization away from z 5 01

and uses either the local Kd~z! or the best estimate of
K`.
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